BOOKS - Machine Learning for Asset Managers (Elements in Quantitative Finance)
Machine Learning for Asset Managers (Elements in Quantitative Finance) - Marcos Lopez de Prado April 30, 2020 PDF  BOOKS
US $9.81

Views
432006
Machine Learning for Asset Managers (Elements in Quantitative Finance)
Author: Marcos Lopez de Prado
Year: April 30, 2020
Format: PDF
File size: PDF 3.3 MB
Language: English

Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.

You may also be interested in: