BOOKS - PROGRAMMING - Real-Time Cloud Computing and Machine Learning Applications
Real-Time Cloud Computing and Machine Learning Applications
Author: Tulsi Pawan Fowdur,Lavesh Babooram, Mohammad Nassir-Ud-Diin Ibn Nazir Rosun, Madhavsingh Indoonundon
Year: 2021
Format: PDF
File size: 28,3 MB
Language: ENG
Year: 2021
Format: PDF
File size: 28,3 MB
Language: ENG
With the emergence of revolutionary technological standards such as 5G and Industry 4.0, real time applications which require both cloud computing and machine learning are becoming increasingly common. Examples of such applications include real-time scheduling and resource allocation in cloud radio access networks, real-time process monitoring and control in industrial Internet of Things, network traffic analysis, short-term weather forecasting, and robotics. Given the increase in such applications, several cloud service providers such as Microsoft Azure Machine Learning, IBM Watson, and Google AI have started incorporating Artificial Intelligence (AI) applications on their platforms as well as providing Analytics as a Service. While it is now simple for users to deploy AI or machine learning algorithms using these cloud platforms, researchers from academia and industry can also develop their own machine learning applications and run them on these platforms to benefit from high processing power and global deploy ability. The main purpose of this book is to provide in-depth coverage of the programming methodologies and configurations required in developing real-time applications that require machine learning algorithms to be hosted on cloud computing platforms to leverage storage and computing resources.