BOOKS - PROGRAMMING - Bayesian Modeling and Computation in Python
US $8.93
622811
622811
Bayesian Modeling and Computation in Python
Author: Osvaldo A. Martin, Ravin Kumar and Junpeng Lao
Year: 2022
Format: PDF
File size: 40,7 MB
Language: ENG
Year: 2022
Format: PDF
File size: 40,7 MB
Language: ENG
Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics.