BOOKS - PROGRAMMING - Applied Text Analysis with Python Enabling Language Aware Data ...
Applied Text Analysis with Python Enabling Language Aware Data Products with Machine Learning - Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda 2017 PDF | DJVU EARLY RELEASE O;kav_1Reilly Media BOOKS PROGRAMMING
US $9.58

Views
23401
Applied Text Analysis with Python Enabling Language Aware Data Products with Machine Learning
Author: Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda
Year: 2017
Number of pages: 229
Format: PDF | DJVU EARLY RELEASE
File size: 10.1 MB
Language: ENG

The programming landscape of natural language processing has changed dramatically in the past few years. Machine learning approaches now require mature tools like Python s scikit-learn to apply models to text at scale. This practical guide shows programmers and data scientists who have an intermediate-level understanding of Python and a basic understanding of machine learning and natural language processing how to become more proficient in these two exciting areas of data science. This book presents a concise, focused, and applied approach to text analysis with Python, and covers topics including text ingestion and wrangling, basic machine learning on text, classification for text analysis, entity resolution, and text visualization. Applied Text Analysis with Python will enable you to design and develop language-aware data products. You ll learn how and why machine learning algorithms make decisions about language to analyze text; how to ingest, wrangle, and preprocess language data; and how the three primary text analysis libraries in Python work in concert.

You may also be interested in: